
w
w

w
.in

l.g
ov

Developer Guidelines for
RELAP5-3D Programming,
2013
Dr. George Mesina

RELAP5 International Users Seminar
Idaho Falls, ID
September 12, 2013

Outline
•  Programming Goals
•  Source Code
•  Code Behavior
•  Testing
•  Documents

Programming Goals
•  Major Goals: SQA, Debugging/Maintenance, Speed
•  Quality

–  Bug prevention – unit testing
–  Verification – indicate how coding implements model in report/

document
–  Validation – supply test cases to validate new coding

•  Against analytical results
•  Against appropriate data if available
•  Against other computer codes if possible

Programming Goals
•  Structured programming

–  MUCH easier to debug.
–  Program units comprised of a series of coding blocks where each

block has EXACTLY one entry at top and one exit at bottom.
–  Blocks may have sub blocks.
–  Structured programming has stronger modularity than OOP.

Programming Goals
•  Run speed

–  Vector/parallel coding generally runs faster, even on serial/scalar
machines.

–  Vector programming – loops without certain features
•  Recursion, I/O, sub-loops, calls to non-inline subprograms
•  PCs now have short vectors to speed execution

–  SMD Parallel programming – loops without data dependency
•  Recursion, thread order issues
•  Many multi-core machines allow SMD

Source Code
 •  Program Units
•  Source Coding
•  Source Code Formatting

Program Units
•  Main Program
•  Module
•  Subprogram

–  Subroutine
–  Function
–  Intrinsic
–  Blockdata

Module
•  Name ends in “mod” and should be 9 letters or less.
•  Internal form – 3 sections

1.  Declarations
•  Avoid USE statements (except level 0 modules)

2.  Data Dictionary
3.  Internal Subprograms

•  1. Declarations – 4 subsections
–  Derived type definitions
–  Derived types
–  Arrays
–  Scalars
–  Alphabetize the variable names of each basic type

Modules
•  Data Dictionary

–  Derived types first, alphabetical listing of variables, regardless of
basic type

–  Remaining data in alphabetical order, regardless of basic type
•  Module subprograms

–  Restrict to work on the module’s data. EXAMPLES:
•  Constructor, destructor, restart writer, restart reader,

calculations with module data
–  If any external data is needed, bring it in through call parameters.

•  No USE statements
•  If call sequence gets too long, remove subprogram from

module.

Subprograms
•  Main subprograms vs. internal subprograms

–  Main subprogram has the contains statement
•  Main – description, declarations, dictionary, body, internal routines

–  Description: documentation of purpose, author, date
–  Declarations: Same order/alphabetization rule as modules
–  Data Dictionary: Same as modules

•  Body of main subprogram
–  Outline style comments precede each major structured

programming block of coding.
–  Outline major sub-blocks. Explain important points too.
–  Long sections of coding, particularly pre-compiler protected code,

can be made into internal subprograms
–  NO restriction on USE statements in MAIN subprograms

Subprograms
•  Internal subprograms

–  Description required
–  Author and date optional (normally not needed)
–  Declarations, dictionary (or local variables), and body rules the

same as for main subroutine
–  Place needed USE statements into containing program unit:

•  Main subprogram or Module declarations
•  Helps various debugging/maintenance efforts

Source Code Programming
•  Employ ANSI Standard FORTRAN only

–  No compiler extensions such as real do loop indices
•  No obsolescent Fortran or any of the following:

–  Equivalence, common, bit-packing, backward go-to, etc.
•  Use error trapping on read, write, open, allocate, deallocate statements
•  Memory leak prevention

–  Test before allocating and deallocating
–  Deallocate from bottom up

•  Initialization: Nullify all pointers and initialize all variables ASAP
•  No allocate or deallocate in transient (except reflood).

Source Code Format
•  F90+ continuation mark >= 5 spaces after last non-blank
•  Lower case except in comments and camelBack variable names.
•  Spaces around =/::/+/-/comparator signs and after keywords and

commas (except inside array references)
•  Indentation: 0 spaces for continuation lines, 2 for sub-blocks.
•  Precompiler directives: OpenMP, Vector, and CPP/FPP/GPP only

–  !$omp, !cdir$, #ifdef, #ifndef, #endif, #else, #include
•  Use same documentation as for modules and additionally:

–  Subprograms place “Executable Code” comment before first such
line

–  Document important/tricky points for the next guy, he may be you!

Code Behavior
•  Goals

–  If possible, process all input, using defaults to replace user errors,
and give user good messages.

–  Code should detect inability to proceed, write a message, and stop
on its own; not abort with a core dump or hang the machine.

•  Messages (input and elsewhere):
–  Error Messages start with “0********”

•  Identify the source (input card, fluid property, file, etc.) as
specifically as possible (Word on card, quantity, filename, etc.)

–  Warning Messages start with “0$$$$$$$$”
•  Ignored input, replacement cards, replacement values, etc.

–  Informational Messages have no special start
•  Input edits, output edits, status of transient, etc.

Code Behavior
•  File Operations

–  Do not overwrite special files: input, property, restart, printed-
output (the last one has a special command line override)

–  Issue error message (screen and output file) if user:
•  Attempts to overwrite special file
•  Required input is not found
•  Set failure flag for graceful shutdown

–  Do not open or close files in the transient
•  Slows code and breaks parallel

•  Input
–  A new card requires new (internal) subroutine, messages, & edit.
–  For errors, provide messages and, if possible, default values
–  If required input cannot be defaulted, give an error message and

terminate immediately by calling “abort.”

Code Behavior
•  Input Cases

–  Be careful that new data is deallocated at the end of a case, and at
start of next case, re-allocated and re-initialized

–  If there is an error in a previous case that set the fail flag, don’t run.
•  Run Termination

–  Immediate failure – set fail flag, write message, call abort.
•  Used if proceeding would cause a core dump. E.G.

–  File unavailable, out of memory/time, machine hang,
singular coefficient matrix, variable has impossible value

–  Graceful failure – set fail flag, write error message, proceed to end
of section (input or transient) where diagnostics are printed.

•  Allows final dump on output files.
–  Normal Termination – final writes, deallocate memory, close files

Code Behavior: Code Output
•  Printed output file, outdta

–  Add new output to appropriate section (volume data in volume
output block of major edit, minor edits in minor edit area, etc.)

–  For significantly different data, create it in an appropriate spot
•  E.G. Coriolis Effect would go in TH area

–  Coding goes in MAJOUT or IMIEDT
•  Restart

–  Add new data to the read and write subroutines of the appropriate
module(s).

•  New files
–  Ensure naming (command line, input card, default), file open and

close, output control (from DTSTEP)

Testing
•  For new subroutine, develop a unit testing program to call and test it
•  Develop one or more test cases that test it from within RELAP5-3D
•  Run installation test suite:

–  Make sure it affects no other calculations, unless it is supposed to
–  If it should affect calculations (bug fix, model improvement), justify

that it does so correctly.
•  INL runs additional test suites when code updates are added.

–  Developmental Assessment
–  Verification Test Suite
–  DTSTEP Test Matrix
–  Others

Documentation
•  See RIUS 2011 “RELAP5-3D Architecture and Style” for details.
•  See G Mesina, “RELAP5-3D Developer Guidelines and Programming

Practices,” Revision 1, INL/EXT-13-29228, June 2013.
•  It will become part of Vol. 8 of the RELAP5-3D manuals when that is

produced.

